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ABSTRACT

This paper answers the question: Which set of

modes furnishes a higher fidelity math model of
dynamics of a multibody, deformable spacecraft--

hlnges-free or hlnges-locked vehicle modes? Two

sets of general, discretized, linear equations of

motion of a spacecraft with an arbitrary number of

deformable appendages, each articulated directly

co the core body, are obtained using the above two

families of modes. By a comparison of these equa-

tlons, ten sets of modal identities are con-
stcucted which involve modal momenta coefficients

and frequencies associated with both classes of

modes. The sums of infinite series that appear in

the identities are obtained in terms of mass, and

first and second moments of inertia of the append-

ages, core body, and vehicle by using certain

basic identities concerning appendage modes.

Applying the above identities to a four-body

spacecraft, the hinges-locked vehicle modes are

found to yield a higher fidelity model than

hinges-free modes, because the latter modes have

nonconverging modal coefflcients--a characteristic

proved and illustrated in the paper.

I. INTRODUCTION

The use of appendage modes for simulating

dynamics and control of multibody flexible space-

craft is widespread, in as much as they are emi-

nently suitable for both small angle (linear) and

large angle (nonlinear) dynamics. To win this

benefit, however, a simulation engineer must

retain a sufficient number of these modes for each

appendage so that the simulation program has

acceptable fidelity. When there are a large number

of appendages in a spacecraft, and/or an appendage

has a large mass and moment of inertia relative to

those of the rigid core body of the spacecraft,

the total number of appendage modes for a high

accuracy model may become unacceptably great

(Reference I), possibly diminishing the utility of

the appendage modes for simulation. Furthermore,

control systems for a mulcibody spacecraft are

most easily designed by considering one axis of

free modes are obtained by leaving all hinges

free, that is, unlocked and unforced, so that the

associated natural vehicle modes may contain

motion of the articulated bodies relative to the

inboard bodies. Conversely, in the hinges-locked

modes, the relative motion of the articulated

bodies is, by definition, zero, and some force or

torque is applied at the hinges to keep the motion

so. In Reference 3, these vehicle modes are form-

ulated, and their zero linear and angular momentum

properties, the orthogonallty conditions, and the

associated modal momenta coefficients are theo-

rized.

A critical question whose answer is sought in

this paper is: Between the hinges-free and hinges-

locked vehicle modes, which one furnishes a higher

fidelity dynamic model, retaining the same number

of modes in the simulation? To this end, a multi-

body spacecraft is considered in thls paper that

consists of a rigid core body, and N flexible

appendages, each articulated directly to the core

body. Three sets of discrete motion equations of

this spacecraft are obtained from a continuum set

by using appendage modes, hinges-free vehicle

modes, and hinges-locked vehicle modes. To compare

the last two families of modes, modal identities

are devised that express the sum of contribution

of all infinite number of modes in terms of first

and second moments of inertia of the articulated

bodiesz the core body, and the vehicle, foitowlng

Hughes". The analysis is amply illustrated, and
definitive conclusions are summarized at the end

of the paper. Although for concreteness, the paper

considers a multibody spacecraft with level-I

articulated bodies (the terminology of HoS), it

will be clear that the conclusions drawn apply to

a wider range of multibody spacecraft.

II. FORMULATION OF CONTINUUM EQUATIONS OF MOTION

Fig. I portrays an N+l-body spacecraft that

consists of a three-axls stabilized core rigid

body B0, and deformable bodies EI,...,EN, each

articulated directly to the core body. The motion

equations will be developed with respect to the

one body at a time, because different bodies 02 _0

control systems' intrinsic features are generally vo

quite different. Having designed them so, to

ensure they all perform as desired in the mutual

presence and in the presence of flexibility, a o re

compact mathematical model of the entire space- E1

craft's dynamics is desired so that the control Ez [sus

is.
designs can be refined fast and economically about

all axes. For this purpose, the linear, small

angle models of spacecraft flexible dynamics are

just right, and so the engineer could beneficially

employ the vehicle modes of the spacecraft.

Hughes 2 conceived of two families of vehicle modes

for multibody spacecraft: "hinges-free" and
II "
hxnges-locked" vehicle modes (although he does

not use this terminology). By de£initionp hinges-

Figure l, An N+l-gody Spacecraft With

N Articulated, Deformable Appendages

Engineering Specialist, Guidance and Control Croup, AIAA Senior Member.
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reference point 0 in Fig. I which is neither the

mass center (_0 uf the body gO, nor the mass
center_ of the entire vehicle V. This generality
in the formulation is warranted because the

NASTRAN modal data corresponding to such multibody

spacecraft are often with respect to an arbitrary
reference node O, and the mass centers are gen-

erally nodeless empty points. The mass of each

body is denoted m_ (p=O)l)...,N); the mass of all
9

N articulated bodies together, me , and the mass of

entire spacecraft, m| clearly, m = m0 + me . The

fErst moment o£ mass of g 0 relative to 0 is _0'
and those for the hinged bodies (j=L,...,N), mea-

sured from the respective hinges Oj) are

thelr products can be ignored in the analysis. The
external forces and torques act ing on the

spacecraft are the force Lo(t) and the

torque _zO(t) acting on B0 at O, and the

force _fj(t) and the torque _j(t) on each Ej at the

hinge 0;. The latter pair, (f.,_.) includes a) -j J '

distributed force _:(r:,t)actlng in the domain of
J -!i

the body Ej, and if _j(rj,t)is the only surface

force acting on Ej, then

" 6j(r jf.(t) = ,t) dA
-j -j (5)

denoted -Jr'" Similar to c (p=O,l ..... N), the _j(t) = [j r_j(rj t) dA
vector _0 emanates from 0 --_nd r.from 0-, Note - - '

that the subscript p covers all -_odies, Jwhile j where dA is an elemental area of

covers only the articulated bodies. The vectors
b. (j=L,...,N) originating from O locate the

h_nges O: of the hinged bodies E:. The first

of J
moment inertia of the entire spacecraft, then,

is
N

c. so+ [ [mj%+ jsj) _So+ I " !j j I

where the matrix C_Oj transforms the Ej-fixed

vector c. to a Bo-flxed vector, and the

vectors-_._ are expressed in _he BO-fixed frame;

Next, J o-_enotes the inertia matrix of the body B0

about the reference point O, while _j is the

inertia matrix of the hinged body E. in its own

frame about the h_nge O.. The inertiaJmatrix of E,
J . . . J

expressed at the r_ference point O tn the Bo-flxed

frame is denoted J. and
-j

j? - [m.bX b_ + b_ )x +
-j = _Oj _j £jO . j_j _j _j (._j Ej

C oj sj ]
where ())x means the 3x3 skew-s3nnmetrix matrix

gj and

_j A=_E " With the aid of the Dirac delta

functlo_ and its derivative, the distributed force

_.(r.,t) also represents a distributed moment.
J -J

Regarding the control forces and torques, those

acting on B 0 are included in the quantities

f__ and ._tO,whereas, if a control force or torque

is produced in the interior domain of Ej without

acting against the core body B0, then that is

included in the pair (_fj,_j); however, if, for

instance, the torque is produced by an electric

motor w[_ich rests on B0 at-t-he interfade O. andJ
exerts on E-, then this is considered separately

and denoted_oj(t)(j=l....',N),for it producesa
reaction torque -_o'(t) which acts on BO. The
total force !(t)an_ torque g(t) that act on the

vehicle are

X

f = _ + _ £Oj!j, _ = $0 + _ [£Oj_j + bjCojfjj (6)
J J

where, of course, l(t) does not include the

control torque _oj(t) at the interface Oj.

associated with the vector (*). The inertia The elastic spacecraft under consideration is

matrix J of the entire vehicle at the point O will relatively simple; it is straightforward to

then be develop its linear, continuum motion equations

following Hughes 4'6)7. The equations governing

-J = _0 + _.-JJ? _- _0 + -eJO (3) the discrete variables VO,_0,_j (j=I,...,N)
j are:

_nticipating our later needs, the cross inertia

matrix J-O" between the bodies B0 and Ej expressed

in the Ej-Jfixed frame equals

t0j_-"-,J.- (Cjo  )x -jc-x

As for the motion of the spacecraft, its mass

center is assumed to perform some orbital motion,

not coupled with its attitude motion under

consideration. To develop motion equations, the

local orbital frame is taken to be an inertial

frame. The kinetic quantities of interest

are: _O(t). the perturbational velocity of the

= f

x. i "' xE_% + 2 0 + 4 -%j}O j + . 'ji_j£Oj +
J *#

_J'c'J£?l-_u"dm :

(7)

cXc ^_ + (.%jJ_Oj) T _0 ÷ _j_j + ;j _j dm = _Oj +-j-ju--u

_j (j = 1 ..... N)

reference point 0 over the uniform orbital motion

at time t; uo(t), the inertial angular velocity where an overdot _ndicaces differentiation with
respect to time. To write the motion equation

of B0; __.(t), the angular velocity of each

articulated body E_ relative to B0 at the governing the deformation -Ju'(r"t)-J of the flexible

hinge 0j; and uj(rj,t), the deformation of g_ at body Ej, denote the related linear stiffness

the location r. cE.. These quantities are take_n to operator by L.; the body Ej is allowed to be

be Linear, _Jst Jorder, infinitesimal, so that anisotropic a%Jd/or nonhomogeneous, and its mass
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densLty is denoted o.(r.). The continuum motion
j - J

equation governing the deformation u. is then"
-j

L.u.+ o. (_cj_o - <cj_j + _j)_cj_ o ---J--j J

J G +_} = &jc__j,t> cj-i ..,,) (8)-j-j - , •

The continuum motion equations (7) and (8) are
discretized in the next section,

Ill. DISCRETIZATION OF CONTINUUM

EQUATIONS OF MOTION

Three families of modes will be employed in

this section for discretlzaCion: (l) appendage

modes, (2) hlnges-free vehicle modes, and

(3) hlnges-locked vehicle modes. The use of

appendage modes is standard; they are employed

here in order to evaluate the infinite sums that

appear in the hinges-free and hinges-locked modal

identities in Section IV in terms of mass, and

first and second moments of inertia Of the

appendages, core body, and the vehicle.

DISCRETIZATION BY APPENDAGE MODES

Following Hughes 4, define the modal momenta

coefficients P. and H. concerning the
-jo -jo

(cantilever) modes _o(_J)a of theappendage

articulated body Ei:

P. fif U_o(Zj) dm (j=l ..... N;o=I ..... ")
-jo j

.-ao #j£ j) dm (9)

where dm = elemental mass. The coefficient P. is
-jo

associated with Linear momentum and H. with

angular momentum of the mode o at theJ°hinge-

point O:, The modal angular momentum coefficient

relaciv_ to the reference point O (Fig. l) is

defined as

.? (Io)

Then the continuum equations (7) and (8)

discretize to

-o%  j- 0j -j .

_ * _jCjo_ o -Jj j

_0T _ 2
T e ee C a

-Pjo-CjO-_O+ -jo-O + H o_j + qjo+ QjoQjo = Yjo

(j=i.....N; o=L.....®) (zz)

where the superscript T indicates transpose of the

quantity; qjo(t) is the modal coordinate
and O_ is the frequency associated with

jo

the _-th appendage mode U:o(Ej)j of the body E j;

a

and yjo(C) is the modal input to that mode:

aT

Y_ao(t) = [. -Ujo(rj)_jCrj,t)-- _ dA (12)
J

Eqs, (11) are a generalization of Eq. (35) of

Hughes 4 , for the former include articulation

motion of the appendages, Much more complex and

general equations than Eqs. (II) are available in

the vast literature on deformable multibody

dynamics; see, for instance, the works of Ho $, and

Singh et al 8 on spacecraft with arbitrary tree

tOpology, Eqs. (IX) nevertheless may boast of

simplicity which is eminently useful while

designing the control systems for articulated

bodies. More importantly though, Eqs. (11) are
derived here because in Section IV they will aid

in developing modal identities. To facilitate this

task, Eqs. (ll) are abbreviated by using the
definitions

0 T
-_A_- [_-_ ..... _O.S_I,

_A _-[_Ol_Ol'"'" _0_0N]

0 T T

H?T _ o .o
-j [_jl -j2 "'']'

0 T 0 T 0 T

HT _ l,-_ [_j_ _jz ""

_A _ diag [_1 "'" "_N l' _A fi d£ag [_1 "'" '_N i

Rj Qj2 "" _A ....

&A "" '

g g TT fib [ N ] _-A_OA I "'' '

ctic. _ diag [f_jl j2'''] fl diag •--j _' -c

T T T T

a _ a a a _ [ a a
_j [Yjl Yj2 "'']' IA " _I "'" -YN ]

(_3)

Eqs. (ii) then take this concise form:

_0 T . oT_
m_-Z_ +_A_-A +-_A_A "-_

T. oTM- + _A-% + "-__A =

o.

o. HA-_O + HA_A + + QA " !APAV_0 + O" -ca2 a (14)
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It is interesting to compare Eqs. (14) with

Eqs. (43) of Hughes 4. For even more compaction of

these equations, the following matrices are
introduced :

ml " = _AI' -- ._1

M-w-_ _o air o o r_[fT aT{-A _H 1̂, uv _
(15)

where i is a 3x3 identity matrix. Eqs. (14)

thereby reduce to the following three matrix

equations: one governing six overall degrees of

freedom of the spacecraft, _v(t); the second

governing nal vector _A of na relative angular
velocities _f N articulated bodies; and the third

governing the =xl vector _A of modal coordinates
of appendage modes of all articulated bodies.

** oT_
_wav + _A_A +_-A_A " _v<t) (16.a)

MVA.._V + JA-_A + H = aA (t) + _A (t) (i6.b)

0_ + _A_A + _A + 2 •_A_V _RA = xA(t) (16.c)

Modal identities associated with the modal momenta
• O

matrtces q__A and HASTe derived in Section IV.

DISCRETIEATION BY HINCES-FREE VEHICLE MODES

In this technique, the continuum equations (7)

and (8) are dlscretized all at once. For this

purpose, the following modal expansion is

postulated for the variables in Eqs. (7) and Eq.

(8) (Reference 3):

to(t)- _(t) + z Xog(t),

Hj(t) =_j(t) + X tjvgv (t),

u,(r.,t), i ,
-J -J v=l

(j=t,2 .... ,N) (L7)

where _0' _0' and _j are the temporal coordinates
for the rigid modes of the spacecraft; the total

number of articulation degrees of freedom is na,

so there are ha+6 rigid modes in all. Furthermore,

_O is the translation of the reference point O,

and _0 is the rotation of the spacecraft,

both in rigid modes; similarly, e_ is the rotation

of the hinged body Ej relative t_ gO at the hinge

0j (j=I,...,N) in a rigid mode. The quantities

-_Ov' _0v' and _jv (j=I,...,N; v=l,...,®) are v-th

modal coefficients contributing, respectively, to

overall discrete motions _0' _O' and _.; and
n (t) is the associated modal coordinate. The

exgenfunct_on U. (r.) is that part of the hinges-

free vehicle m_e_Jdenoted W (£), which defines

the deformation of body E i in v-th mode. Although
U. (r.) satisfies the cohdition of zero displace-
-jr -j

ment and zero rotation at the hinge Oj, that is,

L- -same the o-th appendage mode (r) used
-jo -j

before, because in the case of U. (r.), no torque

-jr -5acts, by definition, at the hinge 0 to enforce

the zero deformation and zero rotation condition,

whereas in the case of U_ (r.), the immobile
-jo -j

support of the appendage enforces that condition.

Because of the mobile support of the hinge Oj, the

total motion Wjv(_j) of Ej in an inertial frame is

÷ -'_J--JJC^'O:v(I:) (j=l ..... N; v=l ..... ®) (18)

where the first two terms in the right side are

because of the translation and rotation of the

core body in the v-th mode, and the third

termEjat Jt-_J is caused by the relative rotation of_--: free hinge Oj. The motion Of the core

body in v-th mode is given simply by

X

_o_(So) = Xo_- £o _o_ (Lg)

Thus a hinges-free vehicle mode Wv(_)spans entire

spacecraft such that

wvC£) =
Wjv(r.), if r = b. + COj£ j

-J - -J (20)

(j=l, .... N; v=l,...,_)

Following Hughes 2, the 6+n a rigid modes

of a spacecraft with articulated bodies are

-rX (j=l,...,n). Not surprisingly,
rx,and Z_ (_) (_=l;.;.,®) arethe elastl modes W

orthogonal to these rigid modes; that is:

; W (r) dm = O, ; rXwv(r) dm = 0,
V V

. s_Wjv(Sj) dm = _ (21.a,b,c)
J

where _V means the entire vehicle is the domain of

integration. Eqs. (21) can be verified by

substituting the expansion (17) in the continuum

equations (7) with zero right sides, indeed,

Eqs. (21a,b) state that the Linear and angular

momentum residing in a v-th hlnges-free vehicle

mode are zero, whereas Eq. (21c) expresses a zero

momentum-Like property of the articulated body Ej.

These properties can be stated alternately by

defining _odal momenta coef[_cients (_ ) for
• 0 Jv'_Jv

each articulated body and (_v,hv) for all

articulated bodies collectively:

_jv _ _..Ujv(r j)_ am -Jvh"_ f -Jrx-]vU" (r.)_j dm
] J (22)

£ : +
J J

where h0 is defined relative to the reference

point 0. These may be compared with the

definitions (9) and (lO). The Zero momentJm
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properties (2[) then transform to:

_ -_ _ __bjvm _ S._O_ _..%jS +_-0
d

£oj_oj + h° " oc_ _ + _-_o_ + z. _*j_ -_ _
J

c_. _ = 0-j CjoX_ov + j-Cj_v + Jj_jv + hjv -

(j=I,...N; v=l,...,®) (23)

The eigenvalue problem which governs a hinges-free

vehicle mode is given by

LjUj (rj) = o._2c.^w. (r.) (j=l .... _; _=z..... ®)- - -- j v-ju--JV --J '
(24)

where u is the frequency of v-th mode. The

orthogo_ality conditions are obtained by perform-
T

ing the operation _ 5 U. (r.) (*) dv over the
_j-J_-J

eigenvalue problem (2_) and recalling the proper-

ties (23). Here, dv is an elemental volume. One

then obtains

wT(r)W (r) dm = 6 (25.a)

V TM -- --_ -- _ v

T 0 T

.-j_-j_
J J (25.b)

T x

[ f uTu din+ ;_c .c.,. -,Tc_.c..,.}-• -Jla-JV _a'Ota-:OJ-j-j'a -JU-j-J u'=_v
J J

- [m T T x T x

(25.c)

i UT LjOjv(r j) dv = =_6Uv (2S.d>
J J

where 6 is the Kronecker delta.

Utilizing the modal expansion (17), the zero

momentum modal properties (21) and (23), and the

orthogonality properties (25), the continuum

equations are discret_zed co these decoupled

equations which separately govern the rigid and

elastic modes of the spacecraft:

..m _0 - _ " _ .%jE = ! (26.a>
J

J

(26.c)

_j + _ *_,,%j+_i> 4-_vct>
J

(v--l, 2 ..... =) (26.d)

where y (t) is the scalar input to _-th mode con-
. . V

szdertng all articulated bodies collectively:

(t> _-; fuT (r.>6.Cr.,t> d^ (27>v . -jr -j -j -J
J J

8O9

These equations are abbreviated by recalling

appropriate definitions from (13) and (15) and by

the following additional definitions

_021 *-o21

_I
j .

rtll "" t _ l,
,_ ! _ [_l_2...

t _ ) (2a>• • _ [Y1 Y2''"

Here RVR is a rigid mode vector, whereas _V in

(15) is a vector of overall motion of the spsce-

craft; the vector _Afrom (28) and _A in (13)

differ likewise. Eqs. (26) now condense to this

desired compact form:

•--_va 4- " _v

"" _^__VAaVr4-! = 1A ÷ iOA

2

n_ + _ =_x_>C4-*_o_+ _^ (So^ + s^) 4-z
(2g)

DISCRETIZATION BY HINGES-LOCKED VEHICLE MODES

Since these modes are defined by forcing the

articulation motion Q. (j=I,...,N) to be zero,

they are obtained by a modal analysis of the first

two equations in (7) and Eq. (8) from which

the ft. (j=I_...,N) terms are ignored. The torque
--j

actually required Co keep the hinges locked can be
evaluated from the third equation in (7) but that

is not relevant here. The equations for the modal

analysis are therefore:

J

c-x_-.O . J _-0 + 2 f. (b;_oj + -_Oj':'));j dm = 0__

J

_Lj_uj 4- oj {C_jo._o - (C_jo_b.j + Ej)x_.CjO_ + _uj} = _0

()0)

Eqs. (30), in fact, govern the motion of a free

spacecraft with cantilevered appendages, so the

sought hinges-locked vehicle modes are the same as

the unconstrained modes ala Hughes 4" The develop-

ment here parallels that in the previous subsec-

tion on hinges-free modes. Accordingly, introduce

the following modal expansion:

_.=I

4- c *c,t_ = U c (rj)n:(t)Y-O =_ 2 ¢oana, ,, uj [-ja-
(31)

where the superscript c reminds us that these

modal quantities pertain to hinges-locked modes.

The quantities _a and _a are the translation and

rotation of the core body B0 in a-th mode. Like-
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wise, the eigenfunctlon U_a(_j). is the defor=

mation of Ej in the a-th mode, analogous
to U. (r.) in the case of v-th hinges-free mode,

-j_ -j
except that now a force is .exerted at the

hinge 0j to ascertain that U_o(0j)j = O and

vXu_ (0.) = O. The total motion of j-th
- -ja 3 -

appendage relative to the 80-fixed frame in

o-th vehicle mode is denoted W_a(£j). and it equals

[cf. Eq. (18)l

(32)

C

The o-th mode of the core body, _a(Y.O), on the

other hand, will be

xc

_a(_O ) _ _a - r_a (33)

Thus, like Eq. (20), the a-th mode WC(r) will

be ._o([0) or W_a(_j) depending on the domain

under consideration. Orthogonaiity of these modes

with the six rigid modes 1 and -r x, similar to

Eqs. (21.a, 2l.b), can be- proved easily. To

express these conditions in terms of hlnges-locked

modal momenta coefficients, define {cf. Eq. (22)]:

C

J

J

Then, the above

[cf. Eq. (23)}:

h_ _[ xc
. rjUja(r j) am--jO _ -- --
J

J
(34)

mentioned orthogonallty is

c - X_C + < = 0mY_a c__Oa

x c ,c + hOc = 0 (35)

The elgenvalue problem obeyed by the a-th hinges-

locked mode W_o(r_. j) is

2

LjU;a(rj) = a): CjOWN;a(r j' (j=l ..... N)

With the aid of the expansion (31), momental

properties (35), and orthogonatlty properties

(37), the original continuum equations (9) are

discretized to

J

_X__o + J__ + _ COj_j_ j = _(t)
J

c Cj + jCj ÷ -J-.1 njana = _Oj + _j

(j=l ..... N)

i ÷';c÷oc c. . c
J -j -j a = _ *-a0_ + Y (t)(38)

Unlike the hinges-free set of discrete

equations (28), the last two equations in (38)

involve a new coupling term called "inertial model

angular momentum coefficient" h_ £ defined as
--Jo

h_z _ f.r_C._W_(r.)dm -
-Ja 3-j--ju-ja -j

r.U. dmx c _ ° + ; x cEj_jO_a + (_fijO --J--J j • --J--Ja
j (39)

which is different from h_ and h 0c defined in

-J_ 3(34). The disturbance input y:( to each

a-th mode equals [cf. Zq. (29)]

T

<(t) y dA
3 J

To compact Eqs. (40), introduce

(40)

ci hCZ cZ [h Z h Zlc Z)-j [-_jl-j2 "'"]' -% "'"

Then, recalling pertinent definitions from (13),

(15) , and (28), Eqs. (38) contract to

(36) HW qvr + A = Uv(t)

where c is the associated hinges-locked fre-
a

quency. The orthogonality conditions between

a-th and B-th modes at@_

T T

f wC wC dm _f c c" U .aC.0_W.B(r .) dm--a -8 , -3 -J j -j _= _ag
V .) .}

T T T T
uC U c c c _ c x c c x C

[. [. -ja-j8 dm - m_.oa.._O8 ÷ [_Y_Oac _08 - _-0.-c _08 s

T

_ _._j c

ucTL Uc dv = _ c2
_ I-ja-j-jS a _a13 (37)

J

These are a bit more general :hen Eqs. (62) of

Hughes 4 .

** A! hclT*_c(t) ffi_A(t) + _OA(t)_Aqv_ +-a A +-_ -."

The vector o_(t) and Yc(t), and the matrices
C C

_c ,_,0 ,_ 0 are defined like their hlnges-free
companions in (28).

IV. HODAL IDENTITIES FOR HULTIBODY

ELASTIC SPACECRAFT

Our principal concern is to compare hinges-free

and hinges-locked modes for their accuracy in

representing articulation motion. To accomplish

this aim, an equation will be obtained from each

of the above three sets of discrete equations

which will be solely in terms of the articulation

motion _A and stimuli. These three equations will

then be compared to yield identities.
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First, consider the discrete set (L6) based on

appendage modes. By matrix manipulations, the

following equation governing :A can be con-

strutted readily:

l! -_ A (q-L A_ I =

+ } _-AM-W_-V

2. 2_-I a

where s is the Laplace variable; theoretically,

iC__Ais an ® x n a matrix, and tl_= an ® x ® symmetric

matrix; _ is an naxn a inertia matrix, and _H is

the total hinge torque vector:

-I T HA,_ ,_,_._ _ _O -L_ 0 T_A -_-_ _vv _VA÷ - - _ -_A_v _A

-i T A

,9_A__-JA- -MvAM--VV_VA' SH = SA + _OA (44)

In (44), l is ® x ® identity matrix. Thus for an

equation of-_._ _A (s),the coefficient of the hinge

torque _H (s) is

11-___ Co_L,+ '._Is2)-t_A_-ll -t (45)

Anticipating our later needs, now we shall prove

that the Lim s*® of the matrix [*J in (45) equals

± (46)
AppLying the matrix inversion lemma to ql , its

inverse is found to be:

-I O [ci_ oTci_ 0 Tq_ " :--- - ¢-A '-_A __^ - _Hw l- l_o (4,)

On the other hand, owing to the identities

(D,E,F)" of Hughes 4

c__A = m I c e _t-e (48)

Also, by definition of H w in (15), and by virtue

of Eq. (1) and Eq. (3)

[ "1M--'v"V m(__l - _ + MO A _0 + 1'10= _e = -e (49)
x

-Co J-oJ

which reduces qJ_-Ico

q_-' = L +_-_ _-l__AoT (so)

A comparison of _= with_ I amazes, Continuing

with the proof nevertheless, call upon the basic

identities (D,E,F)" of Hughes 4 to derive the

following new identities associated with the

articulation degrees of freedom:

T _A = _A T 0 = HT HO =_A _A _A _A° :A J-o_A

- -VA,

T 0

(z)

(New identities derived in this paper will be

Labeled with Roman numerals as they are cited.)

These identities and Eq. (50), in turn, lead to

the identity

which proves Eq. (46)

An equation analogous to Eq. (43) is obtained

from the hinges-free discrete set (29). For that,

recall the second expansion in (17). Then it can

be shown that

T 2, 2_-i

- _VA _vvL _v(s)

T 2, 2_-i s) (51)+ [!+_ACL +_', _ _A] _H(

The coefficient of the hinge cirque _H (s) in

Eq. (51) equals the term (45). They both reduce

to I for the tim s÷0, and for the lim s*® they

yield, in view of Eq. (46), the identity

which proves a fortiori that, since the inertia
T

matrix _ is positive definite and _A_A nonnegative

definite, the modal coefficients @.v(J=l, .... N;

_=I,...,®) leo. (L7)] constitute a-_onconverging

series.

The hinges-locked discrete set (42) furnishes

this equation for _A:

-l[±- IT(L-"-cJ J)-lh - - " -

h:IT(_ + 2/s2)-I c c-c (._Y_O: ÷ -_0 _ + Y-c) (52)

The equality of the coefficient matrices

of _H(s) in Eq, (51) and Eq. (52) delivers this
_dentity in the s-domain:

{l- _lr(! + -cJ/s2)-L_:_-_]-z " ! +

For the llm s-O, the left side of (IV) degenerates

to 1 as does its right side. On the other hand,

tak_ng its limit s*- and recognizing the identity

(III) produce the identity

[! " "cIT'cIs'l_A _A'_ I "_ (v)

The identity (IV) can be rearranged such that

it reveals poles and zeros of the

dynamics. For tha_, recognize that when
s = + " (u=l,. ,®&j = -i) the right side

of (IV), which is also the coefficient

of _H(S) in (St), is unbounded, so ± jw are the
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poles of the spacecraft. Cons(luently , for

unboundedness to occur, the Left side of (IV),

expressed in terms of individual hlnges-locked

modes, yields the identity

det [± X (l c2/ 21-I hCl hCl T _-l] = 0 (VI)

Q

where h tIT is the a-th row of the matrix

cI "_hA . Similarly, when S = ± jw (a = 1,...), the

matrix within [.] on the Left side oE (IV), which

is the coefficient of _ _Ain (52), is unbounded,
• C

which implies that ± Jwa are the zeros of the

dynamics. Therefore, co realize unboundedness, the

right side of (IV) bears forth

det [!+_(L-%2]%c21 -l.____+_1 -0 evil)
p

T +
where + zs the u-th row of the matrix

_A [Eq. (28)]. Knowing the poles and zeros, the
_entity (IV), keeping in mind its lim, has this

alternate form [cf. (Y) of Hughes4]: s÷®

/P

[_ -,(IT CI^_ll_| nf C2)/{ n£ (s2+w 2 }

a=l /L U

(z +_ _A .=t u=Z

where nf = total number of retained modes. Because

of the -identity (V), however, this form seems to

be less useful than the form (IV). Following

Garg 9, one can examine how far the identities (IV)

or (VIII) are satisfied in the s-domain. The

identities (VI) and (VII) are useful in several

ways; for instance, known hinges-locked parameters

can be used to determine hinges-free modal

parameters, or vice versa, after Hughes and

Gsr8 I0. Incidentally, the identities (VI) and

(VII) are analogous to the identities (M) 8 and
(Q) of Hughes 4. As in Reference 4, under

conditions of symmetry, these identities

reduce to those concerned with individual

articulation degrees of freedom. Owing co

symmetry, _nce d_ferent sets of modes will

contribute to different articulation degrees

of freedom, the set a (a=l,...,-) may form n
• a

subsets a.(j=l,...,n a) and each a. will span the
J®range l,._.,=; the set _ (_=l,..., ) fragmentates

likewise° The identities (VI) and (VII) then

simplify to

(1 wc2/w2 }-i .cI. CITn-i- [_ n # ] = (zx)
ai=l ai _& --a --a -- t,k 6tk

u&=l i & - I [_---%-_Jt,k 'na

(x)

V. ILLUSTRATION OF HODAL IDENTITIES

AND DISCUSSION

The identities will now be illustrated for a

four-body deformable spacecraft shown in Fig. 2.

It has two flexible solar arrays, E l and E2, each

having one articulation degree of freedom about

Yl- and Y2-axis, respectively, relative to the

core body BO, and a sensor having two rotational

degrees o£ freedom about x 3- and Y3-axis. These
four articulation angles are denoted

ely , B2y , B3x , and 03Y' and the spacecraft thus

has ten rigid modes. Hinges-free and hinges-locked

vehicle modal data for the spacecraft were

obtained by using NASTRAN. From a detailed finite

element model having 19,434 degrees of freedom and

3,239 nodes, 63 hinges-free and 67 hinges-locked

elastic modes below 25 Hz were computed. Since the

vehicle is essentially symmetric (the sensor

causes a slight asymmetry), both symmetric and

antisyr_netrlc vehicle modes arise in transverse

bending and in-plane bending of the arrays, and

the vehicle modes are categorized accordingly

in Table I and Table 2. Fig. 3a confirms the

prediction from the identity (III) that the

hinges-free modal coefficients, in this case

_lpy (_=I,...,63) for the Yl-Solar array, form a
nonconverging series. In Fig. 3a, the largest

modal coefficients tly for _=B,II,18,28,... cor-
respond to those vehicle modes which predominately

entail torsion of the Yl-array about Yl-axis

(Table I). In contrast, those contributing to

e3 , namely, _3_ (_=t,...,63), form essentially aY Y
convergent series because the sensor is rigid, and

symmetric transverse bending of the arrays

(Table I) or local high-frequency deformation of

BO at the sensor base produce $_ (_ffiI,...,63_.

The hinges-locked co_ling c_ficlent, h;:

for Yl-array and h3ay for e3y rotation for t_e

modes u=I,...,67 are displayed in Fig. 4.

h cl forms a converging series.
Unlike $1_y' lay

The identities (Ill) and (V) are the simplest,

for they involve only modal coefficients, no

frequencies. The identity (Ill) _s _llustrated in

Fig. 5. The error indexes ekk (k=l, 3) (HF means

hinges-free) are the corresponding dlagona[

elements of the (_x_) matri_[_ + _ _l-l z_
contrast to their zero ideal value, the asymptotes

B3
U3x

E2

EARTH

z3 _o

O3y y

So

C-- Yo (ORBIT NORMAL)

Boy

zl

E!

Figure 2. A Four-Body Deformable Spacecraft
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Table I. Hinges-Free Hodes

Characteristics
of the Mode

Transverse bending of
arrays and A-frames

Torsion of arrays and
A-frames

In-plane bending of
the A-frames and

solar arrays

Symmetric

Antisymmetric

Array 1

Array 2

Symmetric

Antisymmetric

Mode No,

1, 5,9, 13, 15,21 ....

2, 6, 10, 14, 16, 22 ....

8, 11, 18,28 ....

7, 12, 19,29 ....

3so,.

4, 17, 20 ....

Affected
Rotational

Degrees of
Freedom

Ooy, O3y

eoz

ely

E)2y

None

Oox, e3x

Table 2. Hinges-Locked Hodes

Characteristics
oftheMode

Transverse bending of
arrays and A-Frames

Symmetric

Mode No.

1,2, 6,8, 12, 16

It 2e,,o

Affected
Rotational

Degrees of
Freedom 1"

Ooy

O3y

Antisymmetric 3, 9, 13, 17, 20, 27 .... eoz

Torsion Array 1 5, 6, 10, 11, 14, 15, 22, 23 .... ely

Antisymmetric 7, 18, 21 .... Cox

8t...

28, 35, 36, 37, 41,42, 43, 44,
47, 48, 49, 53 ....

In-plane bending of
arrays and A-frames

Vibrations of the spacecraft

e3y

eox

28, 36, 37, 41,42, 43, 44, 45, 8oy
47, 48, 49, 53 ....

28, 35, 36, 37, 38, 41,42, 43, eoz
44, 47, 48, 53 ....

t Information about the interaction with e2y and 83x not available

100

10-1

I_l_yl 10-2

10-3

10-4

10-5

(A)
4=:=_ ELASTIC MODES 1_3/Ayl 100_

,"I III

M , 10-3o I

10-4

10-5
0 10 20 30 40 50 60 70

/4 .MODE NO.

Figure 3.

is}

lJllLlIIJr
0 10 20 30 40 50 60 70

/_ .MODE NO.

Hinges-Free Hodal Coef£icients o£ Articulation Hotion of Yl- Solar Array,

I'1_zl, end of Sen.or B3,1%_y I, about y3-Axi.
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101

toO

10-I

¢1
Ihlayl 10.2

10-3

10-4

10-5

'°i
los

I0-1

10-2

Ih_Yllo_3

10-4

lO'S t
104 .... .!...

O

<A)

(e)

10 20
- MODE NO.

Figure 4. Hinges-Locked Hodai Coefficients

Associated with the Articulation Hotlon

cI

of yl-Solar Array, ]hlayl, and of the
cI

Sensor about y3-_is, Ih3ay I

!1 05 f

IHF -

--L_

o Io _ _ _ _ _ 70

"g°'!LS.7 ["-'_t....-.__

O. - - , .. L ....

p MODE NO.

Figure 5. Hinges-Free Identify III: Diminishing

of Error Index with Hinges-Free Modes p

of these indexes are 0.0406 for k=l (e I rotation
,y

of the yl-array) and 0.689 for k=3 (03x , the

HL

("11
1.0

HL .94250 10 20 30 40

0'44

.9420

.9415

.9410_ .....

O' 10

i

2'0 .... 3'0 .... 40

MODE NO.

Figure 6. Hinges-Locked Identify V: Crowth of

Completeness Index with Hinges-Locked Hodes a

HF

(1- ekk). j1 The growth of the diagonal elements
cl Tcl^ -1

(1,1) and (4,4) of the matrix h. h A _9 are
depicted in Fig. 6. Surprisingly, a_on_s_e the

HF • HL

error index ell__ tn Fig. 5a, _II(HL means hinges-

locked) approaches unity in just two hinges-locked

torsional modes, 5 and 6 (Table 2), and its

asymptoti c value is 1.029. Furthermore, by con-

trast with the hinges-free completeness index

(3HF
44 equal to 0.0024 (that is, the above mentioned

• HF
error index e_/, of 0.9976), the hznges-locked

7 _ HL . . .

completeness tndex C44 = 0.9421 tn Fzg. 6b ts

remarkable; in fact, the first hlnges'locked mode,

.i _ymmecric transverse bending m0de Of the arrays

(Table 2), contributes a mighty share, 0.9412,
EL

to P'44"

The identities which involve frequencies as

well ere now illustrated. First, consider the

identity (VII) which is summed over all hinges-

free modes (_--1,...,63) for a specific c. When

co and c are the same to several _decimal

p_aces, i_ is difficult to verify this identity in

this form. On the other hand, the identity (VIII)
c

indicates chat when _ and _ are truly the
• tJ

same, the correspondzng poles _and zeros cancel

each other without affecting the articulation

x-rotation of the sensor). The error indexes dynamics. A physical explanation of this is that

diminish discretely at appropriate modes as when hinges-free and hinges-locked frequencies are

predicted by Table 1. For instance, for 01 ' the truly equal, that particular mode does not

• HF im' " at the torsiona_ modes contribute to the articulation motion so such a
error zndex ell d znxshes

p=8,11,18,28, .... The index for the Y2-array mode may be deleted from the study. In numerical

motion (kffi2) is the same as that for k=l, except work, however, it is difflCuiC C0 establish true

that it decreases instead at the adjacent equality between two real numbers. Besides, as

torsional modes _=7,12,19,29,... (see Table I). will be seen shortly, for the example in hand,
C

Surprioingly, the asymptote of the error index sometimes even though w and w are the same up
.u

for 03y (k=4), not included in Fig. 5, hovers at to three or four decxmal places, the minuscule
difference between the two is still important for

0.9976 instead of decreasing to the ideal value the verlficat_onof an identity. Consequently, the

zero. Fig. 6 illustrates the hinges-locked following results are 0btalned wlthout truncatlng

identity (V), rearranged as _h_ITh_I_-1_ _ = _1" For either: : modal set. Returning to the identity VII,

discussing this identity and the ones follow- one finds that when n > 9, hinges-locked

ing_ define a "completeness index _ " which frequencies w c are so close to a corresponding

a chat the determinant,
approaches unity for an error-free model [Refer- hinges-free frequency _

ence 1]. [The completeness index for Fig. 5 is instead of being zero, becomes an arbitrarily
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large number. Among a=l, .... 9, the identity (VII)
is best satisfied with as7 and next best with

as2, for wnich the determinants are, respectively,

-0.00415 and 0.04732 (Table 3). The circumstances

which produce these results are revealed by the

identity (X) For a given u c when all available
• u'

hinges-free modes are added to calculate the

(&,k) element of the left side of (X), it iS

denoted _ HF where "asy" means asymptotic

value ; ows + for,=13and4. The

ideal value of this index is unity; however,

when u = u c for some u and a, this index

u_ a l
assumes an arbitrarily large value, and for

p[otting purposes, such large numbers are replaced

by 2 without altering their signs. In the

lef_ side of Fig. 7.a, in the useful range 0
HF

to l, the maximum value of _l],asy concerning the

Yl-array rotation, 81 , is 0.451 for the hinges-

locked mode as2-- a s_mmetric transverse bending

mode of the arrays (Table 2). On the o_her hand,

the first torsional hinges-locked mode having

significant coupling with the rotation Oly isHF

as5 (Table 2 and Fig. 4), but _ll,asy correspond-

ing to as5 is 0.16, Less than O.451 for as2.
HF

Although the index _ll,asy for a=5 should be,

intuitively, greater than that for as2, this

does not happen because the hinges-free frequency

(0.25724 Hz) is close to _; (0.25719 Hz). To

determine the contribution of the mode _ffil, the

O HF with successive addition of _ to the
growth of__ll

same up to three decimal places, the two modes

cannot be truncated from the study of the

verification of the identities VII and X. Next,

consider 6. rotation of the sensor--the rotation

coupled wi_ the transverse symmetric bending of

the arrays (Table I and Table 2). The associated
.,HF

index, C44,asy, versus a is shown in Fig. 7c. In

the range 0 to I, the most it becomes is a

startling tow value= 0.07836 for as2; for thls a,
HF

the growth of _44 with _ indicates chat 99.99%

contribution arises from the first symmetric
transverse bending mode _=l.

The verification of the identity (IX) for

_=k:1 and 4 [s considered in Fig. _. Since this

identity relates to hinges-locked modal para-
HL

meters, its left side is denoted Ctk" Earlier, the

identity (V) and Fig. 4 established that the

hinges-locked coupling coefficients form a con-

verging series. Therefore, the determinant

HL in Fig. 8 do not
identity (VI) and C_k,asy

become arbitrarily large numbers once _ _ 28.

Indeed, only for u=3,4,21,26,27, is the index
HL

unbounded, by contrast with the hinges-
_tk,asy HF

free index Cll,asy in Fig. 7a which is unboundedHL
for all _ _9. The index Ci L depends on the

selected hinges-free frequency _ ; for a's

c _ 2

term (1 - wa tmp) becomeshaving u: >_ , the

negative and these particular hinges-locked

asymptotic value 0.451 for a=2 is shown in the modes diminish the sum. Focusing first on
HL

right side of Fig. 7.a. C HFll is found to escalate Cll,asy, surprisingly, it stabilizes early on to

discretely at _=1,8,11,18,28,29,35,41,42,..., 1.05 when _ffi7 or 8--the first two hinges-free

which, except for _=I, involve torsion o£ the

array I (Table I). The contribution from the

hinges-free mode _=I, a symmetric transverse

bending mode of the arrays (Table 1) like

a=2 hinges-locked mode, is however, extraordi-

narily large: 93%. Nevertheless, the bending
mode u=l is not pertinent to the articulation

HF

motion 01y , so C if = 0.451 for as2 cannot be
accepted, and, instead, C HF = 0.16 for hi5, a

11
torsional mode is accepted. Next consider the

sensor motion 03x. The corresponding index,
c,HF

33,asy' shown on the left side of Fig. 7.b, isHF

1.0059 for 0=7 (compare with C ll,asy , and recall

from Table 3 the value 0.00415 of the identity VII
HF

for a=7). The growth of _33 versus _ for a=7 is

displayed on the right side of Fig. 7.b, where it

is observed to become unity at once when _ffid. To

understand this, note that both _=4 and a=7 modes

involve antisymmetric in-plane bending of the

arrays--a motion which induces 83x (see

Table 1 and Table 2), and that w4 ffi 0.59541 and
c

w 7 = 0.59538 Hz. When the rotation 93x of the

rigid sensor is locked, the moment of inertia

which must be turned by the antisymmetric in-plane

bending, is increased, and that lowers the fre-

quency commensurately. The ratio of the moment of
inertia of the sensor and of the core body, both

about Xo-aXiS, is 0.0717. The decrement of 3.0E-5

Hz noted above in the frequency _4 is mathemat-
HF

ically so precise that C33 becomes unity at once

when a=7. Moreover, although u4 and m; are the

torsional modes. The ascent of C HLII to 1.05 for

U=8 with hinges-locked modes a (Fig. 8a) indicates

significant contributions from a=5,6,[0, and
ll--all torsional modes (Table 2); the con-

tribution from higher torsional modes

attenuates rapidly because of the fast convergence

of h cl As for the rotation O3y, the maximum-lay" HL

value Of _44,asy' displayed in Fig. 8b, in the

range 0 to [ is 0.959 when u=5--the second hinges-

free symmetric transverse bending mode of the
HL

arrays (Table I). The growth pattern of C44 versus

for _=5, also shown in Fig. 8b, states that

virtually the entire contribution arises from the

first hinges-locked mode (_ffil) involving symmetric

transverse bending of the arrays.

Vl. SUMMING UP

To draw conclusions about the relative merits

of hinges-free and hinges-locked vehicle modes,

Table 4 summarizes the completeness _ndexes for

the identities (Ill), (V), (IX), and (X).

Evidently, the hinges-locked indexes are far

closer to unity than the hinges-free indexes. The

superiority o£ the hinges-locked vehicle modes to

the hinges-free modes is established most

persuasively by comparing the indexes for the

articulation motion 03y of the sensor:
C HF

44,asy are 0.0024 and 0.0784--far remote fromHL

unity, whereas C44,asy are 0.9421 and 0.9593--

almost unity. It must be understood, nevertheless,

that the identities (X) and (IX) (or VII and VI)
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Tab[e 3. Identity VII: Variation oE the Hinges-Free Determinant Nich Hinges-Locked
Hodes Ideal Vatue = U

1 2 3 4 5 6 7 8 9

0.97105 0.04732 0.27012 0.79457 0.68305 0.68009 -0.00415 0.19551 -0.32426

Minimum valuegf the determinant among those for (x = 10 ..... 63, is 74.4, and the maximum value is
GOwhen o_/_ = oJc_upto several decimal places

#IF
_I,ASY

_3_ ASY

_HF
(44, ASY

(_11, ASY 0_ -"_

0

2-

.-[

4, ASY "

F

0

:I............HJ"
0 10 20 30 40 SO 60 F0

(e) HINGES.FREE MODES

1.0{ ....................

O.S

(_F 0.S CX- ;'

0.2

0 L .... J-
0 10 20 30 40 50 50 70

HINGES-FREE MODES

(c)

o.o,,,s,[ - f .......j-

O.O,.S9111 _-,

HINGES-FREE MODES

Figure 7. Identity X: Asymptotic Values of the Hinges-Free (HF)
Completeness Indexes Versus Hinges-Locked (HL) Node a,

and Growth of this Index Versus Hin: es-Free Hodes

1.2

,._- -V--2

0.1

-L_..._ (_L o.e _:= s
[J

.......................... O.d l

0,2

10 20 30 10 2O 30

0.95955 _ETAINED HINGES-LOCKED MODES

HINGES-FREE MODE NO./_

0.9595C

0.9594(

..........................

0.95935

_L-_,, __- ,_l_ 0.95930

10 20 30
MODES

HINGES-FREE MODE NO./_ RETAINED HINGES-LUg; r, bu

Figure 8. Identity IX: Asymptotic Values of the Hinges-Locked

Completeness Indexes Versus Hinges-Free Modes, and

Growth 0£ this Index with Hinges-Locked Modes
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Table 4. A Summary of the Completeness Indexes for

Hinges-Free and Hinges-Locked Vehicle Modes;
Ideal Value - I

Hinges-
Free (HF)
Indexes

cH_ 1,asy

C %.esy

CH 4.esy

Identity
III

1 -eH_,asy

0.9594

0.311

0.0024

Identity
X

0.160

1.0059

0.0784

Hinges-

Locked (HL)
Indexes

cHL
11 ,asy

cHL33,asy

cHL44,asy

Identity
V

1.029

TBDt

0.9421

Identity
IX

il .05

TBDt

10.9593

Articulation

Motion

01y

e3x

e3y

Associated

Mode of
Deformation

Torsion

Antisymmetric

in-plane bending

Symmetric trans-
verse bending

tto be determined

represent two different situations: in the former,

the hinges-free modes are employed to yield a

bounded response at a hlnges-Iocked frequency; and

in the latter, the hinges-locked modes are used to

elicit an unbounded response at a hinges-free

frequency. Therefore, a comparison of the indexes

from these identities is slightly inappropriate

perhaps; yet the conclusion [tom Table 2 seems

inevitable that the hinges-locked vehicle modes

yield a much more accurate model for simulation

than the hinges-free vehicle modes do. This is

caused by the nonconvergence of the hinges-free

modal coefficients in contrast with the rapid

convergence of the hinges-locked coupling

coefflcients--the attributes corroborated by the

identities. Besides contrasting one family of

modes with the other, the identities are clearly

useful in sifting through scores o£ finite-element

generated modes to select a few pertinent modes

for an articulation degree of freedom in consid-

eration. An important extension of the preceding
work is to devise identities which involve modal

coef[icients and frequencies of only one family of

modes,..hinges-free or hinges-Locked, not both.

Hughes II has formulated such identities for an

elastic body with no articulated members.

ACKNOWLEDGEMENTS

The numerical results in this paper were

obtained by Mr. Thomas C. Witham, Avionics Systems

Group. The author thanks him with much pleasure

For his painstaking and conscientious efforts.

REFERENCES

I. Hablani, H.B., "Constrained and Unconstrained

Modes, Some Modeling Aspects of Flexible

Spacecraft," Journal of Guidance and Control,

Vol. 5, No. 2, March-April, 1982,

pp. 164-173.

2. Hughes, P.C,, Dynamics of Flexible

Spacecraft, UCLA Lecture Notes (1982).

3. Hablani, H.B., "Hinges-Free and Hinges-Locked

Modes of a Deformable Multibody Spacecraft--A

Continuum Analysis," AIAA 87-0925 CP,

Proceedings of the AIAA Dynamics Specialist

Conference, Monterey, California, April 1987,

Part 2B, pp. 753-768.

4. Hughes, P.C., "Modal Identities for Elastic

Bodies _ith Application to Vehicle Dynamics

and Control," Transactions of ASME, Journal

of Applied Mechanics, Vol. 47, March I980-------_

pp. 177-184.

5. Ho, J.Y.L., "Direct Path Method for Flexible

Multibody Spacecraft Dynamics," Journal o£

Spacecraft and Rockets, VoL. 14, No. 2,
February 1977, pp. 102-LlO.

6. Hughes, ?.C., Spacecraft Attitude Dynamics,

Section 3.6, John Wiley and Sons, New York,

1986, pp. 70-76.

7. Hughes, P.C., "Dynamics of a Chain o£

Flexible Bodies," The Journal of the

Astronautical Sciences, Vo[. 27, No. 4,

October-December 1979, pp. 359-380.

8. Singh, R.P., VanderVoort, R.J., and Likins,

P.W., "Dynamics o£ FlexibLe Bodies in Tree

Topology--A Computer-Oriented Approach," AIAA

Paper No. 84-1024, pp. 327-337.

9. Carg, S.C., "Frequency-Domain Analysis of

Flexible Spacecraft," AIAA Journal of

Cuidance_ Control J and Dynamics, Vol. 5,

No. i, January-February 1982, pp. 54-59.

I0. Hughes, P.C., and Carg, S.C., Dynamics of

Large Flexible Solar Arrays and Application*

to Spacecraft Attitude Control System Design,

institute for Aerospace Studies. University

of Toronto, UTIAS Report 179, February £973.

iI. Hughes, P.C., "Space Structure Vibration

Modes: How many exist? Which ones are

important?," Proceedlngs of the Workshop on

Applications of Distributed System Theor_ to

the Control of Larse _ace Structures, JPL

Publication 83-46, July 1983, pp. 31-47_

817


